Chapter 11 - Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Elimination reactions

Elimination reactions often compete with substitution reactions. In an elimination a base removes a proton from a carbon adjacent to a leaving group and the electrons form a new double bond with loss of the leaving group. According to "Zaitsev’s rule", the more substituted double bond is formed preferentially. The energy barrier to form the more stable product is lower than that to form the less stable product.

\[\text{Br} \quad \text{H} \quad \text{H} \quad \text{base} \]
\[\text{HOCH}_2\text{CH}_3 \]
\[\rightarrow \]
\[\text{C=C} \quad + \quad \text{H}_2\text{O} \]
\[20:80 \]

E2 Elimination

If the elimination reaction takes place in a single step, this is called an E2 elimination. Similar to an \(S_n2 \) substitution reaction, the rate of the reaction depends on two species; the substrate AND the base. Thus, the rate expression indicates the reaction is bimolecular. In this mechanism, a number of bonds are forming and breaking at the same time. The base-H bond and the new double bond are beginning to form, while the C-H bond and the C-X bond is breaking. Everything happens in a single operation. In order for an E2 elimination to take place, the bonds that are breaking must be aligned in the same plane (periplanar) and be 180° apart (anti). If this geometry cannot be adopted, the E2 elimination will not take place under most normal conditions.

\[\text{H} \quad \text{C=C} \quad \text{X} \quad \text{base} \]
\[\text{H} \quad \text{baseH} \]
\[\rightarrow \]
\[\text{H} \quad \text{C=C} \quad \text{X}^{-} \]
\[\text{Rate} = k [\text{R-X}] [\text{base}] \]

Hydrogen and leaving group must be antiperiplanar for elimination to take place.

The requirement for antiperiplanar alignment is readily apparent in the substitution of cyclohexane derivatives. The E2 elimination can only take place if the leaving group is in an axial position. Only they could you have the possibility of a hydrogen on the adjacent carbon aligned 180° from the departing leaving group. Any equatorial position would place the leaving group bond antiperiplanar
only to other C-C bonds of the ring. As shown below, one diastereomer of the chlorocyclohexane eliminates readily at room temperature while the other requires heat to get the reaction to proceed. This is simply due to the requirement of placing the chloride in the axial position. In the top diastereomer, the lowest energy conformation of the ring puts the chloring axial. In the bottom diastereomer, the axial chloride is the less stable conformation and heat is required to get the ring flip to occur.

In the chair conformations below, I have highlighted the anti-periplanar bonds with red bold lines. Notice in the first isomer, the lower energy conformation has two hydrogens (indicated in yellow) that could eliminate in an E2 reaction. In the bottom isomer, the only possibility for an E2 elimination occurs from the highlighted H in the higher energy conformation. Thus, the reaction requires heat and give selectively only the less substituted double bond.
E2 Elimination Characteristics - Substrate

Unlike the S_N2 substitution, an E2 elimination can occur readily form a tertiary substrate. Since the base does not need to approach the crowded carbon, but only the relatively unhindered hydrogen on an adjacent carbon, the sterics around the leaving group don't matter. Primary, secondary and tertiary substrates all undergo E2 elimination reactions. The only requirement, as discussed above, is that there be a hydrogen antiperiplanar on an adjacent carbon.

E2 Elimination Characteristics - Base

The other important feature of an E2 reaction is the base. A strong base is usually required. Strong bases are not necessarily the best nucleophiles. The best bases are things like hydroxide (NaOH), alkoxides (NaOR), or amides (NaNH$_2$).

E2 Elimination Characteristics - Leaving Groups

Since the leaving group is departing in the reaction, it is important just like in the S_N2 reaction. Better leaving groups that form more stable anions are best for elimination reactions.

E2 Elimination Characteristics - Solvent

Polar solvents are required to dissolve the reagents. Aprotic solvents are great for E2. Protic solvents also work well in strongly basic conditions. Note that in any strongly basic media, even if it is a protic solvent, you cannot form carbocations. E2 eliminations will compete successfully with strong base before any carbocation could be formed.