NMR Phenomenon

- **Nuclear Magnetic Resonance**

 A spinning charged particle generates a magnetic field.

 A nucleus with a spin angular momentum will generate a magnetic moment (μ).

 If these tiny magnets are placed in an applied magnetic field (B_0), they will adopt two different states - one aligned with the field and one aligned against the field. The energy difference between these two states is what we are observing with NMR.

Nuclear Spin States

- When EM waves at this energy are directed at the nuclei - it will absorb. Spins will flip from lower energy to higher energy. At that energy, nuclei are “In Resonance”.

NMR Active Nuclei

- Many nuclei are “NMR Active”
 - Spin Quantum Number $I \neq 0$
 - 1H -- $I = \frac{1}{2}$; ^{13}C -- $I = \frac{1}{2}$
 - ^{12}C, ^{16}O -- $I = 0$ -- Can’t be observed

- Other nuclei that are NMR active
 - 2H (D), ^{14}N, ^{19}F, ^{31}P

NMR Instrumentation

- Sample in tube
- Radiofrequency generator
- Detector and amplifier
Magnetic Resonance Imaging

NMR is the basis for MRI

To summarize

A spinning charged particle generates a magnetic field. A nucleus with a spin angular momentum will generate a magnetic moment (m). When placed in a magnetic field (B_0), they will adopt two different states - one aligned with the field and one aligned against the field.

Energy difference between the states at a particular magnet strength. In the R_f range of the EM Spectrum.

Methyl Acetate - Proton NMR

Methyl Acetate - Carbon NMR
Electronic Shielding - Local Environments

Actual magnetic field felt by the nucleus

\[
B_{\text{effective}} = B_0 - B_{\text{local}}
\]

Methyl Acetate - Proton NMR

Methyl Acetate - Carbon NMR

Chemical Shift

- The difference in resonance frequency of a nuclei relative to a standard
- Most Shielded
- Relatively Inert
- Volatile
- Resonance of standard is set to 0

TMS (TetraMethylSilane)
NMR Scale

- **X-Axis - frequency axis**

<table>
<thead>
<tr>
<th>Spectrometer Frequency (MHz)</th>
<th>Peaks measured as a shift (in Hz) away from TMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz NMR</td>
<td>10 Hz</td>
</tr>
<tr>
<td>300 MHz NMR</td>
<td>0</td>
</tr>
</tbody>
</table>

Standard Scale

- $\delta = \text{ppm} = \text{Chemical Shift from TMS (Hz)}$
- Spectrometer Frequency (MHz)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>100 MHz</th>
<th>300 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz NMR</td>
<td>1.0 ppm</td>
<td></td>
</tr>
<tr>
<td>300 MHz NMR</td>
<td>1.0 ppm</td>
<td></td>
</tr>
</tbody>
</table>

Different Spectrometer Frequencies

- Each specific instrument has its own magnetic field strength - resonance occurs at different frequencies.

- 100 MHz NMR
- 300 MHz NMR

Reference TMS

- 10 Hz
- 0

Reference TMS

- 300 Hz
- 100 Hz
- 0
C13 NMR

- Difficult - Carbon 13 only 1.1% of all carbon.
- Number of different carbons
- Functional Group Regions

[Diagram showing different carbons and their chemical shifts]

13C NMR

Symmetry

- Symmetry in molecules can make carbons "Chemically Equivalent"

[Diagram showing molecules with symmetry and chemistry]

Symmetry

- Some molecules have more than one mirror plane
Substitution of Carbon

The intensity of the peaks roughly correlates with the number of hydrogens on the carbon.

C13 NMR Regions

© 2014 Thermo Fisher Co
Bromooctanol

Bromooctanal

Alanine Me-Ester HCl

Alaninol
Alaninol - phthalimide

\[
\begin{array}{c}
\text{H} \quad \text{C} \quad \text{N} \\
\text{OH} \\
\text{O} \\
\text{O}
\end{array}
\]

DEPT-C13

A - normal C13
B - CH carbons only
C - Odd # up (CH3 and CH) Even # down (CH2)

Example from 13.7

[NH\textsubscript{2}]

Cl

KOH ethanol

or

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{N} \\
\text{O} \\
\text{O}
\end{array}
\]

A Real Example

In the alkane region there would only be 4 peaks due to symmetry

In the alkane region there would be 6 different peaks
The Answer Is . . .

Proton NMR
- Number of chemically different hydrogens
- Relative Ratios of protons (peak size)
- How many neighboring hydrogens
- Chemical shifts and functional groups

Proton Equivalency

Homotopic

Enantiotopic

Diastereotopic

Proton NMR Scale
Range 0-10 ppm
NMR Correlation Chart

Typical NMR Chemical Shifts

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Type</th>
<th>^1H Chemical Shift (ppm)</th>
<th>^{13}C Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkane</td>
<td></td>
<td>0.7 - 1.8</td>
<td>10 - 60</td>
</tr>
<tr>
<td>Allylic or next to carbonyl</td>
<td></td>
<td>1.6 - 2.4</td>
<td>30 - 60</td>
</tr>
<tr>
<td>vinyl</td>
<td></td>
<td>2.5 - 4.0</td>
<td>20 - 65</td>
</tr>
<tr>
<td>carbonyl of an ester</td>
<td></td>
<td>4.0 - 5.0</td>
<td>50 - 85</td>
</tr>
<tr>
<td>vinyl</td>
<td></td>
<td>4.5 - 6.5</td>
<td>110 - 150</td>
</tr>
<tr>
<td>aromatic</td>
<td></td>
<td>6.5 - 8.0</td>
<td>110 - 140</td>
</tr>
<tr>
<td>aldehyde</td>
<td></td>
<td>9.7 - 10.0</td>
<td>190 - 220</td>
</tr>
<tr>
<td>alcoholic</td>
<td></td>
<td>varies widely will exchange with D$_2$O</td>
<td>N/A</td>
</tr>
<tr>
<td>carboxylic of water, amide, or carboxylic acid (X = O, N)</td>
<td></td>
<td>N/A</td>
<td>165 - 185</td>
</tr>
<tr>
<td>carboxylic of ketone or aldehyde</td>
<td></td>
<td>N/A</td>
<td>190 - 220</td>
</tr>
</tbody>
</table>

Examples

Methyl Acetate

Area under peak corresponds to the number of H's for that resonance.

Triphenyl Methanol

Ethyl Acetate
Protons on adjacent carbons also have an effect
Resonances will split into n+1 number of peaks

Spin Spin Splitting

Two hydrogens split neighbors into a triplet

Every splitting can be broken down into a series of doublets

Three neighbors - Quartet
Higher Spin Spin Splitting

Pascal’s Triangle

<table>
<thead>
<tr>
<th>Spin State</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>singlet</td>
<td>1</td>
</tr>
<tr>
<td>doublet</td>
<td>1</td>
</tr>
<tr>
<td>triplet</td>
<td>2</td>
</tr>
<tr>
<td>quartet</td>
<td>3</td>
</tr>
<tr>
<td>quintet</td>
<td>4</td>
</tr>
<tr>
<td>sextet</td>
<td>5</td>
</tr>
<tr>
<td>septet</td>
<td>6</td>
</tr>
</tbody>
</table>

H_b will split into 7 peaks

64 different combinations of 6 spins

Summary of Spin Spin Splitting

- Proton resonance split into n+1 number of peaks
- Relative ratio of peaks depends on number of spin states of the neighbors.
- Adjacent protons will couple with the same coupling constant.
- Protons farther away usually do not couple.
- Chemically equivalent protons cannot couple (e.g., ClCH_2CH_2Cl).

Doublet Splitting

Methyl sees 1 neighbor, Methine sees 3

Ethanol

Note that the OH (and NH) usually don’t couple.
1,1,2-Trichloroethane

2-Bromopropane

Butanone

para-Methoxypropiophenone
Toluene

Sometimes peaks overlap

Cinnamaldehyde

Multiple Coupling

Spin Spin Splitting

Every splitting can be broken down into a series of doublets

\[^1H\text{ NMR (without coupling)} \]

\[\begin{align*}
H_a & \quad H_b \\
C & \quad C & \quad H_b \\
H_b & \\
\end{align*} \]

\[^1H\text{ NMR (with coupling)} \]

\[\begin{align*}
H_a & \quad H_b \\
C & \quad C & \quad H_b \\
H_b & \\
\end{align*} \]

Coupling with the same J

\[J_{a-b} = 5\text{ Hz} \quad J_{a-c} = 5\text{ Hz} \]

\[\begin{align*}
H_b & \quad H_a & \quad H_c \\
C & \quad C & \quad C \\
H_a & \\
\end{align*} \]

Coupling with \(H_b \)

Coupling with \(H_c \)
Coupling with different J values

$J_{a-b} = 5$ Hz, $J_{a-c} = 10$ Hz

Cinnamaldehyde

Multiple Coupling

$J_{H1-H2} = 6$ Hz, $H2-H3 = 12$ Hz

Cinnamaldehyde

Multiple Coupling - Identical J

$J_{a-b} = 5$ Hz, $J_{a-c} = 5$ Hz

Cinnamaldehyde
Multiple Coupling - Different J

$J_{a,b} = 10$ Hz
$J_{b,c} = 5$ Hz

$J_{a,b} = 10$ Hz $J_{b,c} = 5$ Hz

Nitropropane

$\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NO}_2$

Strategies for Determining Unknowns

- Given the Molecular Formula - calculate degrees of unsaturation.
- Identify functional groups
- Identify pieces of the structure
- Put the pieces together in a reasonable way
- Double check that your structure matches all the data given.