You should be able to answer questions about the following reaction types on exam 3.

Oxidations

- Benzyl alcohol to benzaldehyde with KMnO₄
- Primary alcohol to 1-ketone with KMnO₄
- Primary alcohol to 2-ketone with KMnO₄ and CrO₃/H₃O⁺

Reductions (Hydrides, Grignards and Gilman Reagents)

- Primary alcohol to primary alcohol with LiAlH₄ and then H₃O⁺
- Secondary alcohol to secondary alcohol with NaBH₄
- Secondary alcohol to secondary alcohol with LiAlH₄ and then H₃O⁺
- Primary alcohol to primary alcohol with BH₃
- Primary alcohol to primary alcohol with LiAlH₄ and then H₃O⁺
- Secondary alcohol to secondary alcohol with R'MgBr
- Secondary alcohol to secondary alcohol with R'₂CuLi
- Secondary alcohol to secondary alcohol with LiAlH₄, then H₃O⁺, and finally R'MgBr
- Secondary alcohol to secondary alcohol with DIBAL
- Primary alcohol to primary alcohol with LiAlH₄ and then H₃O⁺
Other Reactions of Aldehydes and Ketones

Wittig Reaction

\[
\begin{align*}
\text{Ph}_{3}P\text{=CH}_2 + \text{RO} &\rightarrow \text{Ph}_{3}P\text{=O} \\
\text{Ac} + \text{H}^+ + \text{R-NH}_2 &\rightarrow \text{R-NH} + \text{H}_2\text{O} \\
\text{Ac} + \text{R}_2\text{NH} &\rightarrow \text{H}_2\text{O} \\
\text{Ac} + 2\text{ROH} &\rightarrow \text{RO} + \text{RO} + \text{H}_2\text{O}
\end{align*}
\]

1,4-Addition

\[
\begin{align*}
\text{Ac} + \text{CH}_3\text{NH}_2 &\rightarrow \text{Ac-NHCH}_3 \\
\text{Ac} + \text{Ph}_2\text{CuLi} &\rightarrow \text{Ph}
\end{align*}
\]

1,2-Addition

\[
\begin{align*}
\text{Ac} + \text{PhMgBr} &\rightarrow \text{Ph} \\
\text{Ac} + \text{PhLi} &\rightarrow \text{Ph} \\
\text{Ac} + \text{NaBH}_4 &\rightarrow \text{H} \\
\text{Ac} + \text{LiAlH}_4 &\rightarrow \text{H}
\end{align*}
\]
Making Carboxylic Acids and Derivatives

\[
\text{MgBr} + \text{O} = \text{CO} \rightarrow \text{MgO} + \text{phenolate}
\]

Heat

\[
\text{R} - \text{OH} + \text{HO}_2\text{R} \rightarrow \text{R} - \text{O} - \text{R} + \text{H}_2\text{O}
\]

Carboxylic Acids

\[
\text{R} - \text{OH} \xrightarrow{\text{SOCI}_2} \text{R} - \text{Cl}
\]

\[
\text{R} - \text{OH} \xrightarrow{\text{NaOH then CH}_3\text{I}} \text{R} - \text{OCH}_3 \quad \text{limited to primary alkyl halides}
\]

\[
\text{R} - \text{OH} \xrightarrow{\text{HA, CH}_3\text{OH}} \text{R} - \text{OCH}_3 \quad \text{limited to inexpensive alcohol solvents - methanol and ethanol most practical}
\]

Acid Chlorides

\[
\text{R} - \text{Cl} \xrightarrow{\text{H}_2\text{O}} \text{R} - \text{OH} + \text{HCl}
\]

\[
\text{R} - \text{Cl} \xrightarrow{\text{R'}\text{CO}_2\text{Na}} \text{R} - \text{O} - \text{R'} + \text{NaCl}
\]

\[
\text{R} - \text{Cl} \xrightarrow{\text{R'}\text{OH, pyridine}} \text{R} - \text{O} - \text{R'} + \text{pyridine} \cdot \text{HCl}
\]

\[
\text{R} - \text{Cl} \xrightarrow{\text{R'}\text{NH}_2, pyridine}} \text{R} - \text{NHR'} + \text{pyridine} \cdot \text{HCl}
\]

Acid Anhydrides

\[
\text{R} - \text{O} - \text{O} \xrightarrow{\text{H}_2\text{O}} \text{R} - \text{OH} + \text{HO}_2\text{CCH}_3
\]

\[
\text{R} - \text{O} - \text{O} \xrightarrow{\text{R'}\text{OH, pyridine}} \text{R} - \text{O} - \text{R'} + \text{pyridine} \cdot \text{HO}_2\text{CCH}_3
\]

\[
\text{R} - \text{O} - \text{O} \xrightarrow{\text{R'}\text{NH}_2, pyridine}} \text{R} - \text{NHR'} + \text{pyridine} \cdot \text{HO}_2\text{CCH}_3
\]
Esters

\[
\text{RCOOCH}_3 + \text{H}_2\text{O, NaOH} \rightarrow \text{RCOOH} + \text{HOCH}_3
\]

then \(\text{H}_3\text{O}^+\)

Amides

\[
\text{RCONH}_2 + \text{H}_2\text{O, H}_3\text{O}^+ \rightarrow \text{RCOOH}
\]

heat

NEED TO KNOW MECHANISM

Mechanism for Imine Formation

Up to here this is identical to a hydration with amine as nucleophile instead of water

NEED TO KNOW MECHANISM

Mechanism for Enamine Formation

The only difference is this last step. There is no proton on the nitrogen to come off, so a proton is taken off of the alpha carbon
NEED TO KNOW MECHANISM

Mechanism for Acetal Formation

\[\text{Formation of Acetal} \]

\[
\begin{align*}
\text{Acetaldehyde} & \xrightarrow{\text{HA}} \text{Formaldehyde} & & \text{Formaldehyde} & \xrightarrow{\text{HA}} \text{Hemiacetal} & & \text{Watersoluble} \\
\text{+ H}_2\text{O} & \xrightarrow{\text{A}} \text{Acetaldehyde} & & \text{Acetaldehyde} & \xrightarrow{\text{HA}} \text{Hemiacetal} & & \text{+ H}_2\text{O}
\end{align*}
\]

NEED TO KNOW MECHANISM

Fischer Esterification

\[\text{Esterification} \]

\[
\begin{align*}
\text{Acetic Acid} & \xrightarrow{\text{HA}} \text{Acetylating Agent} & & \text{Acetylating Agent} & \xrightarrow{\text{HA}} \text{Ester} & & \text{Water} \\
\text{+ R'OH} & \xrightarrow{\text{A}} \text{Acetic Acid} & & \text{Acetic Acid} & \xrightarrow{\text{HA}} \text{Ester} & & \text{+ R'OH}
\end{align*}
\]
NEED TO KNOW MECHANISMS

Acid Catalyzed Hydrolysis

Base Catalyzed Hydrolysis (Saponification)

Rapid acid-base reaction takes place. Carboxylate is a thermodynamic sink and makes the reaction essentially non-reversible. To get the carboxylic acid, add acid to protonate.