Chapter 20 - Carboxylic Acids

Acidity

Electron withdrawing and donating groups will influence the acidity of carboxylic acids just like we saw previously with alcohols.

Preparation of Carboxylic Acids

Acids can be made by several types of oxidation reactions, hydrolysis of nitriles, or by the addition of Grignard reagents to carbon dioxide.

Reactions of Carboxylic Acids

As we saw before, acids can be reduced with lithium aluminum hydride. Borane will also reduce acids under milder conditions. Note that borane will not reduce esters, so it is possible to reduce a carboxylic acid and leave an ester untouched. More reactions of acids in the next chapter.
Chapter 21 - Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution

Carboxylic Acid Derivatives

Much of the chemistry of carboxylic acids occur with and to form derivatives. From the most reactive to the least reactive, acid halides, anhydrides, esters, and amides represent the most common carboxylic acid derivatives.

Carboxylic Acid - there are many derivatives with different heteroatoms (not H or C) in place of the OH.

Acid Halides (acetyl chloride) Acid anhydrides (acetic anhydride) Esters (methyl acetate) Amides (acetamide)

More Reactive Less Reactive

H₃C=C≡N Acetonitrile - although they don't have a carbonyl, the nitrile carbon has the same oxidation state as a carboxylic acid and is often referred to as a derivative. They are named after the parent acid.